"I think statistics go in one ear and out the other. All of us respond to stories more than numbers."
— Koren Zailckas
As algorithms increasingly dominate our society, what can you do to become more valuable in the data economy? Most people are not interested in becoming a data scientist, any more than most wished to be software developers in a previous generation. It's an esoteric specialty that doesn't appeal to most.
But the truth is, we are inherently data analysts. People are pattern seekers — it is one of the core evolutionary advantages of homo sapiens. The degree of rigor with which they recognize patterns varies, obviously, from the Three Stooges to Albert Einstein.
Even stooges are more talented at data analysis than their surface behavior would suggest. Just about everyone recalls the high school misfit who was barely passing algebra, yet could calculate and rattle off Major League Baseball batting averages for dozens of players as they changed day by day. The classroom math put him to sleep; the real-world application motivated him and demonstrated abilities he didn't even know he had.
I didn't particularly like math and took no more than I needed to get through high school and college. Yet in graduate school, I had a statistics class required for my degree in organization psychology. I had the fortune to have a professor for introductory statistics who, though a prominent researcher in his field of quantitative sociology, was driven to be a world-class teacher.
His lectures were clear and entertaining. Recordings and computerized learning modules were available at the library (yes, this was pre-internet, kids). Bottom line, he left a statistics phobic student, which I and many others in the class were, absolutely no excuse not to acquire the subject material.
I discovered I liked statistics. Statistics, it turned out, was simply a quantitative representation of real life, a way to make decisions in the face of uncertainty, much like navigating the messiness of life. I ended up taking most of my electives in statistics and considered pursuing a Ph.D. in it (I didn't). A 2016 Gartner Group study described a hierarchy of data related roles: