There are many national security challenges facing the U.S., but too often our focus is exclusively on threats from terrorism geopolitics and cyberattacks. As the country confronts the arrival of the Zika virus and contemplates travel bans to Miami, it's time to have an adult conversation about the threats posed by biology.
It's not hard to understand why our lives are increasingly wrapped up in the latest twists and turns of the cyberworld. That supercomputer you are carrying in your pocket (when its tiny colorful screen isn't parked 6 inches in front of your eyes) is a synthesizer of all the world's knowledge, photography, art, music and data. It is also a kind of X-ray machine that can provide insights into the deepest recesses of our personal lives: our preferences, choices, intimate moments, health, purchases and indeed our character.
Yet the impact of all that information and data pales in comparison to what is heading our way in the world of biology. Biological, not cybernetic, developments will determine the course of the 21st century. Ebola, Zika and the emergence of antibiotic-impervious superbugs are just previews of the coming challenges.
By the turn of the next century, most scientists believe biological technologies will introduce the most wrenching changes — both practical and ethical — in our daily lives. These technologies will include human and animal life extension, crop and livestock genetic manipulation, and human performance enhancement, which together will begin changing the very nature of what it means to be human. As futurist and visionary Ray Kurzweil has famously opined, "The singularity is near," meaning the merger of information, big data, artificial intelligence and biology. Stand by for heavy rolls, as we say in the Navy.
A main element of the biological revolution will be its impact on security in the broadest sense of the term, as well as on the more specific realm of military activity. Both of these are part of the work being done by various laboratories around the globe, including here in the U.S. at Johns Hopkins Applied Physics Lab, where I serve as a senior fellow.
Some of the most promising advances made at JHU APL and elsewhere involve man-machine interfaces, with particular emphasis on brain-machine connections that would allow the use of disconnected limbs; more rapid disease identification in response to both natural and man-made epidemics; artificial intelligence, which offers the greatest near-term potential for both positive benefit and military application (i.e., autonomous attack drones); human performance enhancement, including significant reduction in sleep needs, increases in mental acuity, and improvements in exoskeleton and skin "armor"; and efficient genome editing using CRISPR-Cas, a technology that has become widely available to ever smaller laboratory settings, including individuals working out of their homes.
The most important question is how to appropriately pursue such research while remaining within the legal, ethical, moral, and policy boundaries that our society might one day like to set, though are still largely unformed. Scientists are like soldiers on patrol in unmarked terrain, one that is occasionally illuminated by a flash of lightning, revealing steeper and more dangerous ground ahead. The U.S. needs to continue its research efforts, but, equally important, it needs to develop a coherent and cohesive biological strategy to guide those efforts.
But national biological research efforts will also have international implications, so over time there will need to be international diplomacy to set norms of behavior for the use of these technologies. The diplomacy that went into developing the Law of the Sea, and is under consideration in the cyberworld, could serve as a useful model.