Every so often, Hadley Lucca will spend hours in front of her bedroom mirror, struggling to put on earrings or pull her long, golden locks back into ponytails.
For Lucca, 11, activities that other girls her age take for granted can sometimes seem insurmountable. As an infant, Lucca survived a stroke that resulted in hemiplegia, a type of cerebral palsy in which one side of the body is significantly weaker than the other.
"Hadley is a real trouper," said her mother, Sarah Lucca, a schoolteacher from Elko New Market. "She wants to be independent just like the other kids, and that means not having to count on others to do things like put up her hair."
Now, neuroscientists at the University of Minnesota are experimenting with technology that could one day help Lucca achieve her dream of living independently.
In a first-of-its-kind study, researchers found that stimulating targeted areas of the brain with a mild electrical current can enhance the motor skills of children with cerebral palsy, which is the most common motor disability in childhood. The findings, published last month, mark the first time that the exploratory procedure known as "transcranial direct current stimulation," or tDCS, which involves passing an electrical current through the skull and into the brain, was found to be safe with children with cerebral palsy.
"This has the potential to transform lives," said Bernadette Gillick, principal investigator of the study and director of a pediatric research lab at the University of Minnesota Medical School.
As part of the study, researchers enrolled 20 people, ages 7 to 21, who had experienced a stroke around or before birth on one side of the brain, resulting in cerebral palsy and limited hand function. The children came from as far away as Florida, Montana and New York, and underwent direct stimulation sessions for 10 consecutive days, combining 20 minutes of electrical stimulation each day with hours of hand exercises.
The technology deployed is surprisingly low-tech.